

VERSION 5.16.02

USER MANUAL

Copyright 2017 g.tec medical engineering GmbH

User Manual g.CLASSIFYtoolbox 5.16.02 2

CONTENT:

PREFACE ... 4

REQUIRED PRODUCTS .. 5
USING THIS GUIDE .. 6
CONVENTIONS ... 7

HARDWARE AND SOFTWARE REQUIREMENTS .. 8

GENERATING A FEATURE MATRIX ... 9

TRIAL ATTRIBUTES ... 12

TIME POINTS ... 15
TIME SEGMENTS .. 18

GENERATING A CLASSIFIER .. 26

LINEAR CLASSIFIER ... 28
Multi-Class LDA .. 28
Minimum Distance Classifier ... 30

NEURAL NETWORK ... 43
DSLVQ ... 47

SUPPORT VECTOR MACHINE CLASSIFIER .. 50
COMPARISON OF LDA AND DSLVQ ... 55

RECEIVER OPERATOR CURVE .. 62

DSLVQ FEATURE WEIGHTING .. 65

KMEANS CLUSTERING ... 69

USING THE CLASSIFIER ... 71

APPLY CLASSIFIER .. 72

TEST CLASSIFIER ... 75
CLASSIFICATION OUTPUT MAPPING .. 78

DATA ACCESS .. 83

USING THE GET COMMAND.. 83

USING THE SET COMMAND .. 83

ACCESSING THE FEATURE MATRIX ... 84

ACCESSING THE CLASSIFIER OBJECT ... 85

HELP ... 86

BATCH MODE .. 87

PRODUCT PAGE .. 89

User Manual g.CLASSIFYtoolbox 5.16.02 3

To the Reader

Welcome to g.tec’s world of medical and electrical engineering!

Discover the only professional biomedical signal processing platform under MATLAB and

Simulink. Your ingenuity finds the appropriate tools in the g.tec elements and systems.

Choose and combine flexibly the elements for biosignal amplification, signal processing and

stimulation to perform even real-time feedback.

Our team is prepared to find the better solution for your needs.

Take advantage of our experience!

Dr. Christoph Guger Dr. Guenter Edlinger

Researcher and Developer

Reduce development time for sophisticated real-time applications from month to hours.

Integrate g.tec's open platform seamlessly into your processing system.

g.tec's rapid prototyping environment encourages your creativity.

Scientist

Open new research fields with amazing feedback experiments.

Process your EEG/ECG/EMG/EOG data with g.tec's biosignal analyzing tools.

Concentrate on your core problems when relying on g.tec's new software features like ICA,

AAR or online Hjorth's source derivation.

Study design and data analysis

You are planning an experimental study in the field of brain or life sciences? We can offer

consultation in experimental planning, hardware and software selection and can even do the

measurements for you. If you have already collected EEG/ECG/EMG/EOG, g.tec can analyze

the data starting from artifact control, do feature extraction and prepare the results ready for

publication.

User Manual g.CLASSIFYtoolbox 5.16.02 4

Preface

This section includes the following topics:

Required Products

Using This Guide - Suggestions for reading the handbook

Conventions - Text formats in the handbook

User Manual g.CLASSIFYtoolbox 5.16.02 5

Required Products

g®.CLASSIFYtoolbox uses:

g®.BSanalyze – the advanced biosignal analysis software package from g.tec

MATLAB – as basic matrix operation platform

Signal Processing Toolbox - to give access to standard signal analysis tools

User Manual g.CLASSIFYtoolbox 5.16.02 6

Using This Guide

 “Generating a Feature Matrix” shows how to extract specific features that are used for the

classification task.

Chapter “Generating a Classifier” demonstrates the set-up of linear and non-linear classifiers

and shows how to classify the feature matrix. Linear Discriminant Analysis (LDA), Minimum

Distance Classifier (MDC), Multi-layer Perceptron (MLP), Radial Basis Function (RBF) and

Distinction Sensitive Learning Vector Quantization (DSLVQ) are explained.

“Receiver Operator Curve” demonstrates the computation of the sensitivity and specificity

and presentation as ROC curve.

Chapter “KMEANS Clustering” demonstrates the clustering on a three-class problem.

“DSLVQ Feature Weighting” explains the necessary steps for feature selection based on the

DSLVQ algorithm.

“Using the Classifier” explains how to apply already calculated classifiers on new data and

how to test a classifier on new data.

”Data Access” shows how to access the feature matrix and classifier objects from the

MATLAB command line.

Chapter “Help” explains the usage of the on-line help, the printable documentation and the

function help.

Chapter “Batch-Mode” shows how to use the g.BSanalyze commands from the MATLAB

command line.

User Manual g.CLASSIFYtoolbox 5.16.02 7

Conventions

Item Format Example

MATLAB code Courier to start simulink, type
simulink

String variables Courier italics set(P_C,'PropertyName',...)

Menu items Boldface Select Save from the File menu.

User Manual g.CLASSIFYtoolbox 5.16.02 8

 Hardware and Software Requirements

For Hardware and Software Requirements see the g.BSanalyze manual.

User Manual g.CLASSIFYtoolbox 5.16.02 9

Generating a Feature Matrix

The first step in generating a feature matrix is to calculate specific features (e.g. bandpower

values) with the Parameter Extraction methods of g.BSanalyze. There are three options

available:

 Trial attributes - extract the features of trials with specific attributes

 Time points - extract the features of the signals at specific time points

 Time segments - extract the features of the signals of specific segments

Perform the following steps:

1. After starting MATLAB and setting the correct path, type:

gbsanalyze

into the MATLAB command line

g.BSanalyze starts with a blank data window

2. Select Load Data under the File menu and open the file session1234triggered.mat

from the following directory:

Documents\gtec\gBSanalyze\testdata\BCI

The Data Editor shows a brain-computer interface (BCI) experiment data-set with 2 EEG

channels and 1 trigger channel. The first channel was recorded from channel C3, the

second channel from channel C4. The paradigm is described in detail in the g.BSanalyze

documentation in chapter Data-sets – Movement Imagination.

User Manual g.CLASSIFYtoolbox 5.16.02 10

3. To extract relevant information out of the raw EEG data select Bandpower under the

Parameter Extraction menu. Select the ALPHA filter to calculate the bandpower between

7 and 13 Hz and set the Length of the averaging window to 128 samples with an Overlap

of 127 samples.

4. Press the Select channels button and select only the two EEG channels 1 and 2 for the

operation

5. Chose Add new channels to append the bandpower values to the raw data

6. Press Start to perform the operation

7. Repeat steps 4 to 7 with the BETA-3 filter (14 to 20 Hz)

User Manual g.CLASSIFYtoolbox 5.16.02 11

8. After finishing the calculation the Data Editor visualizes the newly created features.

Channels 4 and 5 represent the bandpower in the alpha range and channels 6 and 7 the

bandpower in the beta range.

User Manual g.CLASSIFYtoolbox 5.16.02 12

Trial Attributes

Trial Attributes allows to extract features of trials which correspond to a specific class. The

class is assigned with trial attributes in g.BSanalyze (such as right or left hand movement

imagination).

1. Open the Feature Matrix window from the Classification menu

2. The CLASSIFICATION INTERVAL should Start at 1000 ms with a Step size of

1000 ms and Stop at 8000 ms. These settings extract for each time point (1000, 2000,

… 8000 ms) the corresponding features.

3. Chose classes LEFT and RIGHT to extract only trials with these trial attributes

User Manual g.CLASSIFYtoolbox 5.16.02 13

4. Press the Select features channels … button and select the 4 bandpower channels 4,

5, 6 and 7

5. Under Classification method it is possible to select a specific method for the

classification of the currently generated feature matrix. If the Classify data checkbox

is enabled the selected classification window will be started.

6. Uncheck the Randomly permutate the matrix checkbox because the trials with the

left and right class labels are already randomly permutated. If this is not the case

enable the box to generate a randomly permutated feature matrix.

7. Uncheck the Classify data box (if the box is checked the Linear Discriminant

Analysis (LDA) window is immediately opened for further processing)

8. Check Save results to store the generated feature matrix. The automatic treemaker

generates a subdirectory under the current data path with the name featurematrix.

Enter as filename bandpower.mat.

9. Press the Start button to generate the feature matrix.

User Manual g.CLASSIFYtoolbox 5.16.02 14

To perform the example demonstrated above from the MATLAB command line use the

following code:

%Load Data

P_C=data;

File=['C:\Users\' getenv('USERNAME')

'\Documents\gtec\gBSanalyze\testdata\BCI\session1234triggered.mat'];

P_C=load(P_C,File);

% Bandpower

ChannelExclude = [3];

Filter.Name = 'ALPHA';

Filter.Type = 'BP';

Filter.f_low = [7];

Filter.f_high = [13];

Filter.Realization = 'fft';

Filter.Order = [0];

IntervalLength = 128;

Overlap = 127;

Replace = 'add channels';

FileName = '';

ProgressBarFlag = 0;

P_C = gBSbandpower(P_C, ChannelExclude, Filter, IntervalLength,...

 Overlap, Replace, FileName, ProgressBarFlag);

% Bandpower

ChannelExclude = [3 4 5];

Filter.Name = 'BETA-3';

Filter.Type = 'BP';

Filter.f_low = [14];

Filter.f_high = [20];

Filter.Realization = 'fft';

Filter.Order = [0];

IntervalLength = 128;

Overlap = 127;

Replace = 'add channels';

FileName = '';

ProgressBarFlag = 0;

P_C = gBSbandpower(P_C, ChannelExclude, Filter, IntervalLength,...

 Overlap, Replace, FileName, ProgressBarFlag);

%Feature Matrix

Interval=[128 128 1024];

AttributeName={

 'LEFT'

 'RIGHT'

};

ChannelExclude=[1 2 3];

Permutate=0;

MergeTimePoints=0;

FileName=['C:\Users\' getenv('USERNAME')
'\Documents\gtec\gBSanalyze\testdata\BCI\featurematrix\bandpower.mat'];

ProgressBarFlag=[0];

F_O=gBSfeaturematrix(P_C,Interval,AttributeName,Permutate,...

MergeTimePoints,ChannelExclude,FileName,ProgressBarFlag);

User Manual g.CLASSIFYtoolbox 5.16.02 15

Time Points

To extract features of the signal at different time points to investigate e.g. an initial state and

an active state perform the following steps.

1. Load the data-set session1234bp.mat that was created in the previous section from

Documents\gtec\gBSanalyze\testdata\BCI\session1234bp.mat

2. Open Cut Trials Channels from the Transform menu and click the Select

trials/chan. button. In Specify TRIALS this dialog click the Include only radio

button and select only RIGHT trials for further operation. This allows inspecting

changes between the inactive and active state of the BCI experiment for all right hand

movement imagination trials.

3. After finishing the settings click OK to close the Select dialog.

4. Click Start to perform the action with the settings provided above.

User Manual g.CLASSIFYtoolbox 5.16.02 16

5. Open the Feature Matrix window from the Classification menu

6. Set the CLASSIFICATION INTERVAL Start at box to 1000 ms, the Step box to

1000 ms and the Stop at box to 8000 ms. These settings populate the Select time

point listbox with specific time points.

7. Select 2000 ms and 7000 ms to extract only the features at these time points

8. Check the Save results box to store the features under tpbandpower.mat. The

automatic treemaker generates the path.

9. Press Start to perform the operation.

10. The Linear Classifier dialog will open, see corresponding chapter for further

description.

User Manual g.CLASSIFYtoolbox 5.16.02 17

To perform the example demonstrated above from the MATLAB command line use the

following code:

%Load Data

P_C=data;

File= ['C:\Users\' getenv('USERNAME')
'\Documents\gtec\gBSanalyze\testdata\BCI\session1234bp.mat'];

P_C=load(P_C,File);

%Select Trials and Channels

trial_id=[4];

channel_id=[];

type_id=[];

channelnr_id=[];

flag_tr='tr_inc';

flag_ch='ch_exc';

flag_type='type_exc';

flag_nr='nr_exc';

[TrialExclude, ChannelExclude]=gBSselect(P_C,trial_id,...

flag_tr,channel_id,flag_ch,type_id,flag_type,channelnr_id,flag_nr);

P_C=gBScuttrialschannels(P_C,TrialExclude,ChannelExclude);

%Feature Matrix

Interval=[256 896];

AttributeName={};

ChannelExclude=[];

Permutate=0;

MergeTimePoints=0;

FileName= ['C:\Users\' getenv('USERNAME')
'\Documents\gtec\gBSanalyze\testdata\BCI\featurematrix\tpbandpower.mat'];

ProgressBarFlag=[0];

F_O=gBSfeaturematrix(P_C,Interval,AttributeName,Permutate,...

MergeTimePoints,ChannelExclude,FileName,ProgressBarFlag);

User Manual g.CLASSIFYtoolbox 5.16.02 18

Time Segments

Time Segments allows to extract multiple segments of a trial to a feature matrix. Each

segment of a trial receives its own class label. Therefore, if three segments are extracted the

feature matrix contains three classes.

Follow these steps to generate a time segment feature matrix:

1. Load the data file Data.mat from

Documents\gtec\gBSanalyze\testdata\SelfPaced

into the Data Editor. The Data Editor shows one ECoG channel and one trigger

impulse channel.

User Manual g.CLASSIFYtoolbox 5.16.02 19

2. To detect each trigger impulse start the Eventfinder from the Artifact menu. Check

Mark overflows to search for trigger impulses which exceed 90 % of the maximum of

the channel.

User Manual g.CLASSIFYtoolbox 5.16.02 20

3. Check Set-start marker to assign an OR1 marker to each rising edge on the trigger

channel. Uncheck the Show epoching areas box.

4. To search only on the trigger impulse channel press the Select trials /chan. button and

select channel 2

5. Press Start to search for the trigger impulses.

The Data Editor shows now 50 markers.

6. Open the Trigger window from the Transform menu and check the Marker radio

button and select OR1 to extract 6 second trials around each OR1 marker

User Manual g.CLASSIFYtoolbox 5.16.02 21

7. Check the Accept Overlap box to allow overlapping trials

8. Press the add to list button to accept this trigger criterion

9. Press Start ! to perform the operation. Now the Data Editor shows 49 trials with a trial

length of 6 seconds. 2 seconds prior to the trigger impulse and 4 seconds after the

impulse.

10. To calculate parameters from the ECoG channel open the Bandpower window from

the Parameter Extraction menu

11. Select the ALPHA filter to extract the bandpower from 7 to 13 Hz

12. Press the Select channels button and chose only channel 1 for the calculation

13. Select Add new channels to append the new feature channel to the data in the Data

Editor

14. Press Start to perform the calculation

15. Repeat steps 10 to 14 with the BETA-3 and with the BETA filter

User Manual g.CLASSIFYtoolbox 5.16.02 22

The Data Editor contain now 3 additional bandpower channels

16. Open the Time Segment Feature Matrix window from the Classification menu and

define the classification segments. Enter under Start at 2000 ms and under Stop at

2200 ms and press the Add button. Then enter 5000 ms and 5200 ms and press again

the Add button. These settings will extract two segments from each trial. The first

segment will be the first class and the second segment the second class.

17. Press the Select features channels … button and chose the bandpower channels 3, 4

and 5

18. Check the Randomly permutate the matrix box to generate a random permutation of

the trials

User Manual g.CLASSIFYtoolbox 5.16.02 23

19. Click on Save results and enter the name selffmseg.mat into the upcoming window

to store the feature matrix.

20. If the Classify data box is checked the Linear Discriminant Analysis (LDA)

algorithm window would be opened for further processing, see chapter Linear

Classifier for further description.

21. Press Start to perform the operation.

User Manual g.CLASSIFYtoolbox 5.16.02 24

To perform the example demonstrated above from the MATLAB command line use the

following code:

%Load Data

P_C=data;

File=['C:\Users\' getenv('USERNAME')

'\Documents\gtec\gBSanalyze\testdata\SelfPaced\Data.mat'];

P_C=load(P_C,File);

%Select Trials and Channels

trial_id=[];

channel_id=[];

type_id=[];

channelnr_id=[2];

flag_tr='tr_exc';

flag_ch='ch_exc';

flag_type='type_exc';

flag_nr='nr_inc';

[TrialExclude, ChannelExclude]=gBSselect(P_C,trial_id,flag_tr,...

channel_id,flag_ch,type_id,flag_type,channelnr_id,flag_nr);

% Eventfinder (overflow)

MarkOverflow = 1;

showEpochingAreas_over = 0;

setStartMarker_over = 1;

setStopMarker_over = 0;

AssignAttribute_over = 0;

StartMarker_over = 'OR1';

StopMarker_over = 'OR2';

TrialAttribute_over = 'OVERRUN';

Threshold_over = 90;

getUnit_over = '% of max';

TrialExclude_over = [];

ChannelExclude_over = [1];

ProgressBarFlag = 0;

[P_C, PreviewOverflow, VecThreshold] = gBSoverflow...

 (P_C, MarkOverflow, showEpochingAreas_over,...

 setStartMarker_over, setStopMarker_over,...

 AssignAttribute_over, StartMarker_over, StopMarker_over,...

 TrialAttribute_over, Threshold_over, getUnit_over,...

 TrialExclude_over, ChannelExclude_over, ProgressBarFlag);

%Trigger

New_tm{1}={3 1};

SamplesBefore=400;

SamplesAfter=800;

Uncomplete=0;

ChannelExclude=[];

P_C=gBStrigger(P_C,New_tm,SamplesBefore,SamplesAfter,Uncomplete,ChannelExcl

ude);

User Manual g.CLASSIFYtoolbox 5.16.02 25

% Bandpower

ChannelExclude = [2];

Filter.Name = 'ALPHA';

Filter.Type = 'BP';

Filter.f_low = [7];

Filter.f_high = [13];

Filter.Realization = 'fft';

Filter.Order = [0];

IntervalLength = 100;

Overlap = 99;

Replace = 'add channels';

FileName = '';

ProgressBarFlag = 0;

P_C = gBSbandpower(P_C, ChannelExclude, Filter, IntervalLength,...

 Overlap, Replace, FileName, ProgressBarFlag);

% Bandpower

ChannelExclude = [2 3];

Filter.Name = 'BETA-3';

Filter.Type = 'BP';

Filter.f_low = [14];

Filter.f_high = [20];

Filter.Realization = 'fft';

Filter.Order = [0];

IntervalLength = 100;

Overlap = 99;

Replace = 'add channels';

FileName = '';

ProgressBarFlag = 0;

P_C = gBSbandpower(P_C, ChannelExclude, Filter, IntervalLength,...

 Overlap, Replace, FileName, ProgressBarFlag);

% Bandpower

ChannelExclude = [2 3 4];

Filter.Name = 'BETA';

Filter.Type = 'BP';

Filter.f_low = [14];

Filter.f_high = [32];

Filter.Realization = 'fft';

Filter.Order = [0];

IntervalLength = 100;

Overlap = 99;

Replace = 'add channels';

FileName = '';

ProgressBarFlag = 0;

P_C = gBSbandpower(P_C, ChannelExclude, Filter, IntervalLength,...

 Overlap, Replace, FileName, ProgressBarFlag);

%Time Segment Feature Matrix

Interval=[

400 440

1000 1040

];

ChannelExclude=[1 2];

Permutate=1;

FileName=['C:\Users\' getenv('USERNAME')

'\Documents\gtec\gBSanalyze\testdata\SelfPaced\featurematrix\selffmseg.mat'

];

ProgressBarFlag=[0];

F_O=gBStimesegmentfeaturematrix(P_C,Interval,Permutate,...

ChannelExclude,FileName,ProgressBarFlag);

User Manual g.CLASSIFYtoolbox 5.16.02 26

Generating a Classifier

This section explains the classification and classifier generation of the feature matrix with the

following methods:

Linear Classifier

Multi-Class Linear Discriminant Analysis (LDA)

Minimum Distance Classifier (MDC)

Neural Network

 Multi-Layer Perceptron (MLP)

 Radial Basis Function (RBF)

DSLVQ

 Distinction Sensitive Learning Vector Quantization (DSLVQ)

All classification windows have certain control fields in common:

The Load FEATURE MATRIX field allows to Browse for a feature matrix file and shows

the filename as well as the Dimension of the matrix. The number of features corresponds to

the number of channels used for the feature matrix generation.

The number of trials depends on the feature matrix generation mode:

Mode 1 – Trial Attribute … the number corresponds to the number of trials which have a

certain trial attribute (e.g. left or right)

Mode 2 – Time Point … the number corresponds to the number of selected time points (e.g.

2000 ms and 7000 ms) times the number of trials (e.g. 80)

Mode 3 – Time Segment ... the number corresponds to the number of samples in the time

segments times the number of trials

Time points expresses the generation time points of the feature matrix. For each single time

point the whole feature matrix is generated (e.g. 1000, 2000, … 8000 ms).

User Manual g.CLASSIFYtoolbox 5.16.02 27

The Select FEATURE CHANNELS field allows to specify the numbers (corresponds to the

channel number when the feature matrix was generated) of the features that should be used for

plotting a cloud of the feature matrix in gResult2d.

Choose METHOD and OPTIONS allows to select the classification method and the training

and test-sets:

10 x 10 cross validation … The 10 times 10 fold cross validation mixes the data set

randomly and divides it into 10 equally sized distinct partitions. Each partition is then used

once for testing, the other partitions are used for training. This results in 10 different error

rates, which are averaged. This is the error rate of a 10 fold cross validation. To further

improve the estimate the procedure is repeated 10 times and again all error rates are averaged.

Train 50 % - Test 50 % … uses the first 50 % of the feature matrix for training and the rest

for testing

Train 100 % - Test 100 % … uses all the data for training and testing

Train 100 % - Test 0 % … uses all the data for training. This is useful to generate a

classifier.

The Result procedure field allows to open gResult2d with the classification result and a

cloud of the features. The classifier window option opens the MATLAB Editor with

classification results and classifiers (weight vectors). Save results allows to store the

classification result under a specific filename. If the Automatic treemaker is enabled a

subdirectory under the current data directory is created. The result is stored into this

subdirectory.

User Manual g.CLASSIFYtoolbox 5.16.02 28

Linear Classifier

The Linear Classifier window allows to perform a linear discriminant analysis and minimum

distance classifier analysis of multiple classes.

Multi-Class LDA

Linear Discriminant of Fisher

An optimal decision rule for minimizing the probability of misclassification is based on the

idea of discriminant functions. The simplest form consists of a linear combination of the

inputs. The parameters are obtained with a learning algorithm from a set of training data.

Fisher introduced a method that reduces the dimensionality before classification [Bishop

1995].

The dimension reduction is done by projecting the input data x onto a value y with adjustable

weights w

y T w x (1)

Of course this leads to a loss of information but we chose w in such a way that maximizes the

class separation between class1 and class 2 (e.g. left and right finger movement).

For class „left finger“ the mean vector is

m1 x



1

1N
nleftfinger

n Classleftfinger

 (2)

where N1 is the length of the input vector.

For the class „right hand“ m2 is

m2 x



1

2N
nrightfinger

n Classrightfinger

 (3)

The separation of the two classes is made by separating m1 and m2

m m T2 1  w m2 m1() (4)

By choosing w arbitrary large the difference increases, therefore define

wi

i

2 1 (5)

and after some calculation we obtain

 w  m m12 (6)

But a problem arises with this separation that is shown below.

User Manual g.CLASSIFYtoolbox 5.16.02 29

 x2

x1

 m2-right finger

 m1-left finger

Separation problem.

If we project m1 and m2 onto the x1 axes the difference is bigger than in the case of

projecting onto the x2 axes. But there are within-class spreads that cause a better separation

when m1 and m2 are projected onto x2.

Fisher proposed as solution

 w S m2 m1 
w

1 (7)

where Sw is the total within class covariance matrix

     S x m1 x m1 x m2 x m2w n n
T

n n
T

n Classrightfingern Classleftfinger

     




 (8)

Which is a projection rule for the data down to one dimension.

By choosing a threshold y0 we can classify a point to class 1 if it is greater zero or to class 2

otherwise.

Obviously the dimension reduction reduces the amount of information, but it can lead to

improvements of the classifier performance [Bishop 1995].

References:

Bishop, C. M., Neural Networks for Pattern Recognition. Clarendon Press, Oxford, 1995.

User Manual g.CLASSIFYtoolbox 5.16.02 30

Minimum Distance Classifier

Let x be the feature vector for the unknown input. Vectors m1, m2, ..., mc are the templates

(i.e., perfect, noise-free feature vectors) for the c classes. Then the error in matching x against

mk is given by

|| x - mk || .

where || u || is called the norm of the vector u. The minimum-error classifier calculates

|| x - mk || for k = 1 to c to find the class for which this error is minimum. || x - mk || is also the

distance from x to mk and therefore the method is called minimum-distance classifier.

m2

m1 m3

x

norm(x-m2)

norm(x-m1)

norm(x-m3)

User Manual g.CLASSIFYtoolbox 5.16.02 31

Linear Classifier window:

Classification method can be Linear Discriminant Analysis (LDA) or Minimum

Distance Classifier (MDC). In the case of MDC under Metric the Mahalanobis or

Euclidian distance can be selected.

User Manual g.CLASSIFYtoolbox 5.16.02 32

Example 1:

Perform the following steps to make a classification of an EEG-based brain-computer

interface data-set:

1. Open the window Linear Classifier from the Classification menu

2. Press the Browse button and select the feature matrix file bandpower.mat that was

created in the previous example and is stored under

Documents\gtec\gBSanalyze\testdata\BCI\featurematrix

The featurematrix contains 4 features (2 bandpower values in the alpha range and 2

bandpower values in the beta range), 160 trials (80 right and 80 left) and 8 time points

(1000, 2000, … 8000 ms).

3. Under Select FEATURE CHANNELS select Map feature no 3 against 4 to plot a

cloud of the feature matrix in gResult2d

4. Select Linear Discriminant Analysis (LDA) from the pull-down menu

User Manual g.CLASSIFYtoolbox 5.16.02 33

5. Select 10 x 10 cross-validation to randomly mix the training and testing data-set

6. Check the Show with Result2D and Open classifier window to open gResult2d and

the MATLAB Editor to view the classification result and the weight vector (not

available for 10 x 10 cross validation)

7. To store the classification result check Save results and enter the filename

LDAbp.mat. The automatic treemaker generates the directory.

gResult2d opens with the classification result. The classification error is at the beginning

around 50 % and drops down to 13 % at second 7.

User Manual g.CLASSIFYtoolbox 5.16.02 34

The MATLAB Editor shows the ASCII description of the classification. The first and

second columns of the matrix shows the classification time point in seconds and samples.

The third column represents the mean classification error followed by the standard

deviation. The following columns give the classification errors of the 10 cross-validation

runs.

8. Repeat steps 1 to 7 but select under Training / test-sets Train 50 % - Test 50 %

User Manual g.CLASSIFYtoolbox 5.16.02 35

gResult2d opens with the classification result on page 1. Change to page 2 of gResult2d to

view the cloud of feature 3 versus feature 4. The red circles show the feature of a LEFT trial,

the blue circles of a RIGHT trial. The blue line represents the weight vector of the linear

discriminant analysis. The black crosses show the wrong classified trials.

At second 1 the classification error is 48,75 % and therefore the left and right classes can not

be differentiated. But at second 8 the discrimination is possible with an error of 11.25 %. Note

that the blue and red circles are clearly separated.

User Manual g.CLASSIFYtoolbox 5.16.02 36

Now the MATLAB Editor shows also the weight vectors for each calculated time point.

Under Classifier 1 the bias value of the LDA classifier can be found. Classifier 2 shows the

weight values for each feature channel in the same sequence as the features were extracted in

the Data Editor.

Furthermore, the trial number of the wrong classified trials is given for each time point. In this

case only trials of class 2 were wrong classified.

User Manual g.CLASSIFYtoolbox 5.16.02 37

To perform the example demonstrated above from the MATLAB command line use the

following code:

%Load FeatureMatrix

F_M=featurematrix;

FileName=['C:\Users\' getenv('USERNAME')

'\Documents\gtec\gBSanalyze\testdata\BCI\featurematrix\bandpower.mat'];

F_M=load(F_M,FileName);

%Linear Classifier

PlotFeatures=[1 2];

Method=['LDA'];

P.metric=[''];

TrainTestData=['CV'];

FileName=['C:\Users\' getenv('USERNAME')

'\Documents\gtec\gBSanalyze\testdata\BCI\featurematrix\lc\LDAbp.mat'];

ProgressBarFlag=[0];

C_O=gBSlinearclassifier(F_M,Method,P,TrainTestData,PlotFeatures,...

FileName,ProgressBarFlag);

%Linear Classifier

PlotFeatures=[3 4];

Method=['LDA'];

P.metric=[''];

TrainTestData=['50:50'];

FileName=['C:\Users\' getenv('USERNAME')

'\Documents\gtec\gBSanalyze\testdata\BCI\featurematrix\lc\LDAbp.mat'];

ProgressBarFlag=[0];

C_O=gBSlinearclassifier(F_M,Method,P,TrainTestData,PlotFeatures,...

FileName,ProgressBarFlag);

User Manual g.CLASSIFYtoolbox 5.16.02 38

Example 2:

This example shows the classification of a three class problem with the Minimum

Distance Classifier (MDC).

1. Load the data file 3classes.mat into the Data Editor from

Documents\gtec\gBSanalyze\testdata\Classify

The data-set contains 150 trials with 2 feature channels. The channels contain

artificial generated random numbers and the classes are separated by specific mean

values. Trial 128 represents an outlier.

2. Open Feature Matrix from the classification menu and set the

CLASSIFCATION INTERVAL to Start at 1000 ms, Step 1000 ms and Stop

at 5000 ms.

User Manual g.CLASSIFYtoolbox 5.16.02 39

3. Select classes 3, 4 and 5 to separate all 3 classes

4. Chose Minimum Distance Classifier (MDC) under Classification method

5. Check Save results and enter 3clfm.mat as filename

6. Press Start to extract the feature matrix and to open the Linear Classifier window

The dimension of the feature matrix is 2 features (2 channels), 150 trials and 5 time points

(1000, 2000,…5000ms).

7. Select Minimum Distance Classifier (MDC) under Classification method and

chose Train 50 % - Test 50 %

8. Press Start to perform the classification

User Manual g.CLASSIFYtoolbox 5.16.02 40

Page 1 of gResult2d shows 4 classification error time courses. The first channel shows the

Total Error of all classes. Channels 2 to 4 represent the error rates for each individual class.

In this case only class 1 has an error rate which is not zero. This is the case because trial 128

is marked as class 1 trial but represents an outlier. Note that only 50 % of the trials are used

for testing and therefore the total trial number is 75 trials.

User Manual g.CLASSIFYtoolbox 5.16.02 41

The second page maps feature 1 versus feature 2. A color is assigned to each class and the

wrong classified trial 128 is indicated by the black cross. Trial 128 was classified as green

class but belongs to the red class. Therefore, the linear method is not able to correctly

identify trial 128.

The MATLAB Editor shows that 27 trials were selected of class 1, 22 of class 2 and 26 of

class 3.

The weight vector is given for all three classes. The symbol “|” is used to separate the

classifiers.

User Manual g.CLASSIFYtoolbox 5.16.02 42

To perform the example demonstrated above from the MATLAB command line use the

following code:

%Load Data

P_C=data;

File=['C:\Users\' getenv('USERNAME')

'\Documents\gtec\gBSanalyze\testdata\Classify\3classes.mat'];

P_C=load(P_C,File);

%Feature Matrix

Interval=[128 128 640];

AttributeName={

 '3'

 '4'

 '5'

};

ChannelExclude=[];

Permutate=0;

MergeTimePoints=0;

FileName=['C:\Users\' getenv('USERNAME')

'\Documents\gtec\gBSanalyze\testdata\Classify\featurematrix\3clfm.mat'];

ProgressBarFlag=[0];

F_O=gBSfeaturematrix(P_C,Interval,AttributeName,Permutate,...

MergeTimePoints,ChannelExclude,FileName,ProgressBarFlag);

%Load FeatureMatrix

F_M=featurematrix;

FileName=['C:\Users\' getenv('USERNAME')

'\Documents\gtec\gBSanalyze\testdata\Classify\featurematrix\3clfm.mat'];

F_M=load(F_M,FileName);

%Linear Classifier

PlotFeatures=[1 2];

Method=['MDC'];

P.metric=['Mahalanobis'];

TrainTestData=['50:50'];

FileName=['C:\Users\' getenv('USERNAME')

'\Documents\gtec\gBSanalyze\testdata\Classify\featurematrix\lc\3cl.mat'];

ProgressBarFlag=[0];

C_O=gBSlinearclassifier(F_M,Method,P,TrainTestData,PlotFeatures,...

FileName,ProgressBarFlag);

User Manual g.CLASSIFYtoolbox 5.16.02 43

Neural Network

Neural Network allows to calculate a Multi-Layer Perceptron (MLP) or a Radial Basis

Function (RBF).

Artificial Neural Networks (ANNs) can approximate the discriminant function by varying the

connection strength (weight value) between the units. Such networks can have only one layer

or multiple sequential layers (MLP). The MLP available in g.BSanalyze has 1 input layer, 1

hidden unit and 1 output layer.

Radial Basis Function networks have 2 layers. The first one performs a non-linear parameter

transformation and the second layer makes a linear discrimination of the first layer

parameters. The idea of RBF is based on the assumption that a complex pattern classification

problem becomes linearly better separable when the parameters are non-linearly mapped to

higher dimensionality.

The window has the following OPTIONS settings:

No. inputs … number of input units. This number corresponds to the number of feature

channels of the feature matrix

No. hidden units … enter the number of hidden units

No. outputs … number of output units. This number corresponds to the number of classes of

the feature matrix

Learning rate … specify the learning rate of the neural network. The learning rate controls

the learning process. It gives the influence of the present example compared to all the past

examples. A learning rate of 0 means that the neural network is not changed at all, while a

learning rate of 1 would change the neural network according to the present example,

independent of all previous examples.

Stop error … enter the stop error rate

Epochs … specify the number of training iterations

Momentum (only for MLP) … enter the momentum value

User Manual g.CLASSIFYtoolbox 5.16.02 44

Perform the following steps to classify a BCI experiment data-set:

1. Start Neural Network from the Classification menu and open the feature matrix file

bandpower.mat from

Documents\gtec\gBSanalyze\testdata\BCI\featurematrix

The feature matrix has 4 channels, 160 trials and was created for 8 time points (1000

ms, 2000 ms, … , 8000 ms).

2. Set the No. hidden units to 8 and the Epochs to 4000

3. Enter 3 under Map feature no. and 4 under against

4. Select Train 50 % - Test 50 % to split the training and testing data in 50 %

partitions

User Manual g.CLASSIFYtoolbox 5.16.02 45

5. Check Save results and enter the filename NNbp.mat

6. Press Start to calculate the neural network

gResult2d opens automatically with the classification error time course. The minimum error

of 8 % is reached at second 7.

User Manual g.CLASSIFYtoolbox 5.16.02 46

The MATLAB Editor shows also the weight vectors of the generated MLP network.

Classifier 1 shows the weights for the hidden layer (8 hidden layer nodes = 8 columns, 4

inputs layers + 1 bias = 5 rows). Classifier 2 represents the output layer (2 columns = 2 output

nodes, 8 hidden layer nodes + 1 bias value = 9 rows).

To perform the example demonstrated above from the MATLAB command line use the

following code:

%Load FeatureMatrix

F_M=featurematrix;

FileName= ['C:\Users\' getenv('USERNAME')
'\Documents\gtec\gBSanalyze\testdata\BCI\featurematrix\bandpower.mat'];

F_M=load(F_M,FileName);

%Neural Network

P.ninput=[4];

P.nhidden=[8];

P.noutput=[2];

P.learningrate=[0.0002];

P.stoperror=[0.01];

P.epochs=[4000];

P.momentum=[0.98];

PlotFeatures=[3 4];

Method=['MLP'];

TrainTestData=['50:50'];

FileName=['C:\Users\' getenv('USERNAME')

'\Documents\gtec\gBSanalyze\testdata\BCI\featurematrix\nn\NNbp.mat'];

ProgressBarFlag=[0];

C_O=gBSneuralnetwork(F_M,Method,P,TrainTestData,PlotFeatures,...

FileName,ProgressBarFlag);

User Manual g.CLASSIFYtoolbox 5.16.02 47

DSLVQ

The method Distinction Sensitive Learning Vector Quantization is based on the individual

testing of candidate feature subsets. The classifier is initially trained on all features and

through implicit feature relevance analysis the system finds which features are not necessary

and adapts the weighting of the features accordingly. Finally only the relevant features are

used for the classification problem.

The window has the following OPTIONS settings:

Codebooks per class … define the number of codebooks for each class

Alpha … define the learning speed of the algorithm

Epochs … define the number of iterations

User Manual g.CLASSIFYtoolbox 5.16.02 48

Perform the following steps to classify a finger movement ECoG experiment:

1. Open the DSLVQ window from the Classification menu and load the feature matrix

file selffmseg.mat from

Documents\gtec\gBSanalyze\testdata\SelfPaced\featurematrix

2. Enter under Codebooks per class 8 and set the number of Epochs to 2000

3. Enter under Map feature no. 2 and under against 3

4. Chose the Train 50 % - Test 50 % option

5. Press the Start button to train the DSLVQ

gResult2d opens with the classification result. The classification error is 15.978 % and the

plot shows the distribution of features 2 versus feature 3. Red colors correspond to the first

class (segment 2000-2200 ms) and blue colors correspond to the second segment (5000 –

5200 ms). Black crosses indicate wrong classified examples.

User Manual g.CLASSIFYtoolbox 5.16.02 49

To perform the example demonstrated above from the MATLAB command line use the

following code:

%Load FeatureMatrix

F_M=featurematrix;

FileName=['C:\Users\' getenv('USERNAME')

'\Documents\gtec\gBSanalyze\testdata\SelfPaced\featurematrix\selffmseg.mat'

];

F_M=load(F_M,FileName);

%DSLVQ

P.CBperclass=[8];

P.alpha=[0.05];

P.epochs=[2000];

PlotFeatures=[2 3];

Method=['DSLVQ'];

TrainTestData=['50:50'];

FileName=[''];

ProgressBarFlag=[0];

C_O=gBSdslvq(F_M,Method,P,TrainTestData,PlotFeatures,FileName,...

ProgressBarFlag);

User Manual g.CLASSIFYtoolbox 5.16.02 50

Support Vector Machine Classifier

Support Vector Machine Classifier creates a classifier based on support vector machines

[Cortes 1995].

To achieve good performance, it is required to scale the data appropriately, three scaling

methods are implemented: unit variance/zero mean, scaling to range [0 1], and scaling to

range [-1 1]. Further, the hyperparameters have to be tuned for the problem. Use a linear

SVM for linear problems, and tune the trade-off parameter C-value with OPTIMIZATION.

For non-linear problems use a radial basis function (RBF) kernel, this adds an additional

hyperparameter Gamma-value that can be also optimized.

Two procedures for the tuning of hyperparameters are implemented: Grid-search and

Random-search. The latter is recommended if a larger search space is defined. Grid-Search

also allows a fine tuning of the parameters over several levels. Both optimization procedures

use cross-validation to determine the best parameters. The Range, of the tuned

hyperparameters can be selected as well as the Resolution between the range and the Scaling.

References:

Cortes, C. and Vapnik, V. "Support-Vector Networks", Machine Learning, 20, pp. 273-297,

1995.

User Manual g.CLASSIFYtoolbox 5.16.02 51

Example:

Perform the following steps to make a classification of an EEG-based brain-computer

interface data-set:

1. Open the window Support Vector Machine Classifier from the Classification menu

2. Press the Browse button and select the feature matrix file bandpower.mat that was

created in the previous example and is stored under

Documents\gtec\gBSanalyze\testdata\BCI\featurematrix

The featurematrix contains 4 features (2 bandpower values in the alpha range and 2

bandpower values in the beta range), 160 trials (80 right and 80 left) and 8 time points

(1000, 2000, … 8000 ms)

User Manual g.CLASSIFYtoolbox 5.16.02 52

3. Select Non-linear (RBF) for the Classifier to use a radial basis function as kernel

4. Select unit variance/zero mean as scaling method

5. Select Train 50 % - Test 50 % to train the classifier on 50 % of the data and test it on

the other 50 %

6. Select Grid-search for Optimization, using 2 Levels

7. Select for the C-value a Range between 1 and 10 with logarithmic Scaling and a

Resolution of 20

8. Select for the Gamma-value a Range between 0.1 and 20 with linear Scaling and a

Resolution of 10

9. Press the Start button

gResult2d opens with the classification result. The classification error is at the beginning

around 50 - 55 % and drops down to 15 % at second 7.

The MATLAB Editor shows the ASCII description of the classifier. The kernel, the

optimization method and the optimized C-values and Gamma-values for each sample are

shown at the beginning:

Support Vector Machine

Kernel: radial basis function

Optimization method: Grid-search

Number of levels: 2

Optimization of the C-value:

Range: [1.0 10.0]

Scaling: logarithmic

Resolution: 20

Optimized C-values:

Second/Sample/C-value:

User Manual g.CLASSIFYtoolbox 5.16.02 53

 1.000 128.000 2.0000

 2.000 256.000 2.0000

 3.000 384.000 2.0000

 4.000 512.000 2.0000

 5.000 640.000 2.0000

 6.000 768.000 2.0000

 7.000 896.000 2.0000

 8.000 1024.000 2.0000

Optimization of the Gamma-value:

Range: [0.1 20.0]

Scaling: linear

Resolution: 10

Optimized Gamma-values:

Second/Sample/Gamma-value:

 1.000 128.000 1.0000

 2.000 256.000 1.0000

 3.000 384.000 1.2222

 4.000 512.000 8.0000

 5.000 640.000 1.0000

 6.000 768.000 1.0000

 7.000 896.000 1.0000

 8.000 1024.000 1.0000

The classification error is shown in the following table: The first and second columns of the

matrix show the classification time point in seconds and samples, the third column shows the

error.

Second/Sample/Total Error/[Error Class 1/Error Class 2...]

 1.000 128.000 57.5

 2.000 256.000 51.2

 3.000 384.000 55.0

 4.000 512.000 28.7

 5.000 640.000 43.8

 6.000 768.000 22.5

 7.000 896.000 15.0

 8.000 1024.000 21.3

The following code shows how to perform the example demonstrated above from the

MATLAB command line.

%Load FeatureMatrix

F_M=featurematrix;

FileName=['C:\Users\' getenv('USERNAME')

'\Documents\gtec\gBSanalyze\testdata\BCI\featurematrix\bandpower.mat'];

F_M=load(F_M,FileName);

%Support Vector Machine Classifier

CLOption=[1];

Scaling=[1];

TrainTestData=['50:50'];

CParam=[10];

GParam=[0.5];

Optimization=[1];

Levels=[2];

Loops=[100];

CRange=[1.0 10];

CScaling=[1];

CResolution=[20];

GRange=[0.1 20];

User Manual g.CLASSIFYtoolbox 5.16.02 54

GScaling=[0];

GResolution=[10];

FileName=[''];

ProgressBarFlag=[1];

C_O = gBSsvmclassifier(F_M,CLOption,Scaling,TrainTestData,CParam,GParam,...

Optimization,Levels,Loops,CRange,CScaling,CResolution,GRange,GScaling,...

GResolution,FileName,ProgressBarFlag);

User Manual g.CLASSIFYtoolbox 5.16.02 55

Comparison of LDA and DSLVQ

This section compares the LDA and DSLVQ methods on the example of an XOR problem.

The XOR distribution is demonstrated in the figure below. Basically the data-set consists of 2

channels with values between 0 and 1. If both channels have values below 0.5 or above 0.5

than the example belongs to class 0. If one channel is below 0.5 and the second channel is

above 0.5 than the example belongs to class 1.

Perform the following steps:

1. Open the data-set XOR.mat from

Documents\gtec\gBSanalyze\testdata\Classify

into the Data Editor

User Manual g.CLASSIFYtoolbox 5.16.02 56

2. Select the Feature Matrix window from the Classification menu to generate a feature

matrix for a single time point.

3. Set Start at, Step and Stop at to 600 ms and select classes 1 and 0 under Select class

4. Check the Save results box and enter the filename xorfm.mat

5. Press Start to save the feature matrix file

User Manual g.CLASSIFYtoolbox 5.16.02 57

6. Open the Linear Classifier window under Classification and Browse for the feature

matrix file xorfm.mat

7. Select Train 50 % - Test 50 % and press the Start button

User Manual g.CLASSIFYtoolbox 5.16.02 58

gResult2d maps feature 1 versus feature 2 and shows the classification error of 64 %. The

LDA is not able to discriminate the XOR problem.

8. Close the Linear Classifier window

User Manual g.CLASSIFYtoolbox 5.16.02 59

9. Open the DSLVQ window

10. Load again the xorfm.mat file and set the Codebooks per class to 8 and the Epochs

to 4000

11. Select Train 50 % - Test 50 % and press the Start button

User Manual g.CLASSIFYtoolbox 5.16.02 60

gResult2d shows now the classification result of the DSLVQ classifier with an error

rate of 8 %. Note that only 2 trials (which are close to the border of 0.5) were wrongly

classified. If the number of training examples is enhanced the error rate is reduced.

User Manual g.CLASSIFYtoolbox 5.16.02 61

To perform the example demonstrated above from the MATLAB command line use the

following code:

%Load Data

P_C=data;

File= ['C:\Users\' getenv('USERNAME')
'\Documents\gtec\gBSanalyze\testdata\Classify\XOR.mat'];

P_C=load(P_C,File);

%Feature Matrix

Interval=[3 3 3];

AttributeName={

 '1'

 '0'

};

ChannelExclude=[];

Permutate=0;

MergeTimePoints=0;

FileName=['C:\Users\' getenv('USERNAME')

'\Documents\gtec\gBSanalyze\testdata\Classify\featurematrix\xorfm.mat'];

ProgressBarFlag=[0];

F_O=gBSfeaturematrix(P_C,Interval,AttributeName,Permutate,...

MergeTimePoints,ChannelExclude,FileName,ProgressBarFlag);

%Load FeatureMatrix

F_M=featurematrix;

FileName=['C:\Users\' getenv('USERNAME')

'\Documents\gtec\gBSanalyze\testdata\Classify\featurematrix\xorfm.mat'];

F_M=load(F_M,FileName);

%Linear Classifier

PlotFeatures=[1 2];

Method=['LDA'];

P.metric=[''];

TrainTestData=['50:50'];

FileName=[''];

ProgressBarFlag=[0];

C_O=gBSlinearclassifier(F_M,Method,P,TrainTestData,PlotFeatures,...

FileName,ProgressBarFlag);

%Load FeatureMatrix

F_M=featurematrix;

FileName=['C:\Users\' getenv('USERNAME')

'\Documents\gtec\gBSanalyze\testdata\Classify\featurematrix\xorfm.mat'];

F_M=load(F_M,FileName);

%DSLVQ

P.CBperclass=[8];

P.alpha=[0.05];

P.epochs=[4000];

PlotFeatures=[1 2];

Method=['DSLVQ'];

TrainTestData=['50:50'];

FileName=[''];

ProgressBarFlag=[0];

C_O=gBSdslvq(F_M,Method,P,TrainTestData,PlotFeatures,FileName,...

ProgressBarFlag);

User Manual g.CLASSIFYtoolbox 5.16.02 62

Receiver Operator Curve

The sensitivity and specificity of a diagnostic test depends on more than just on the quality of

the test. It depends also on the definition of what constitutes an abnormal test. In practice a

threshold is selected to distinguish e.g. normal from disease. The threshold level determines

the number of true positives, true negatives, false positives and false negatives. By moving the

threshold to a higher level the sensitivity can be improved which makes the criterion for a

positive test less strict. The specificity can be improved by moving the threshold to a lower

value which makes the criterion for a positive test more strict. Thus, there is a tradeoff

between sensitivity and specificity. Therefore, a Receiver Operator Characteristic curve

(ROC) can be used to find the optimal threshold. The ROC curve plots the true positive rate

against the false positive rate for different thresholds.

The ROC curve demonstrates the following:

 It shows the tradeoff between sensitivity and specificity - an increase of the sensitivity

is accompanied by a decrease of the specificity

 The test is less accurate if the ROC curve comes closer to the 45 degree diagonal line

 The test is more accurate if the curve comes close to the left and upper border

 The area under the curve is a measure of accuracy:

0.9 - 1 excellent

1.8 - 0.9 good

0.7 - 0.8 fair

0.6 - 0.7 poor

0.5 - 0.6 fail

User Manual g.CLASSIFYtoolbox 5.16.02 63

Perform the following steps:

1. Open the Receiver Operator Curve window from the Classification menu

2. Press the Browse button to load feature matrix file selffmseg.mat from

Documents\gtec\gBSanalyze\testdata\SelfPaced\featurematrix

The features matrix has 3 channels and 4018 trials

3. Select feature 3

4. Press the Start button

User Manual g.CLASSIFYtoolbox 5.16.02 64

gResult2d opens with the ROC curve. The true positive rate (TP) is plotted on the y-axis, the

false positive rate (FPR) is plotted on the x axis. The area under the blue ROC curve is 0.8

which corresponds to a good accuracy and the optimal threshold level is 583.67 (indicated by

the circle). The circle marks also the maximum of the red HF (hit-false) difference curve.

To perform the example demonstrated above from the MATLAB command line use the

following code:

%Load Feature Matrix

F_O=featurematrix;

FileName=['C:\Users\' getenv('USERNAME')

'\Documents\gtec\gBSanalyze\testdata\SelfPaced\featurematrix\selffmseg.mat'

];

F_O=load(F_O,FileName);

%Receiver Operator Curve

FeatureNumber=[3];

NrBins=[100];

ClassNumber=[1];

FileName=[''];

ProgressBarFlag=[0];

D_O=gBSreceiveroperatorcurve(F_O,FeatureNumber,ClassNumber,...

NrBins,FileName,ProgressBarFlag);

User Manual g.CLASSIFYtoolbox 5.16.02 65

DSLVQ Feature Weighting

DSLVQ can be used to analyze the importance of specific features to a discrimination task.

The window has the following OPTIONS settings:

Codebooks per class … define the number of codebooks for each class

Alpha … define the learning speed of the algorithm

Epochs … define the number of iterations

Bootstraps … number of bootstrap repetition

Evaluation … percentage of data used for testing’

Perform the following steps:

1. Open DSLVQ Feature Weighting from the Classification menu and Browse for the

feature matrix bandpower.mat under

Documents\gtec\gBSanalyze\testdata\BCI\featurematrix

User Manual g.CLASSIFYtoolbox 5.16.02 66

2. Set the number of Epochs of 4000

3. Check Save results and enter the filename dslvqfwbp.mat

4. Press Start to perform the feature weighting

Page 1 of gResult2d show the classification error of the training data (blue line) and of the

testing data (green line). The minimum is reached at second 7. During the first 5 seconds the

error rate of the testing data is higher as the training error.

User Manual g.CLASSIFYtoolbox 5.16.02 67

The second page of gResult2d shows the feature weights for each time point. From second 1

to 3 the error is around 50 % and drops down to a minimum of 11.75 % at second 7.

The blue bars represent the importance of each feature to the discrimination task. At second 1

features 1 is the most important one, followed by 4, 2 and 3. But the classification error is

51,75 % and therefore the result is random. At second 7 the error is 11,75 % and therefore the

feature weighting can be considered as reliable. Therefore, feature 4 (bandpower in the beta

range of channel 2) is the most important one. The bar of feature 3 is much smaller but the

feature can still be considered as important for the classification task. Features 1 and 2 are not

important and should not be considered for the discrimination.

User Manual g.CLASSIFYtoolbox 5.16.02 68

To perform the example demonstrated above from the MATLAB command line use the

following code:

%Load FeatureMatrix

F_M=featurematrix;

FileName=['C:\Users\' getenv('USERNAME')

'\Documents\gtec\gBSanalyze\testdata\BCI\featurematrix\bandpower.mat'];

F_M=load(F_M,FileName);

%DSLVQ Feature Weighting

P.CBperclass=[2];

P.alpha=[0.05];

P.epochs=[4000];

P.bootstraps=[20];

P.evaluation=[50];

Method=['DSLVQ'];

FileName=['C:\Users\' getenv('USERNAME')

'\Documents\gtec\gBSanalyze\testdata\BCI\featurematrix\dslvqfwbp.mat'];

ProgressBarFlag=[0];

C_O=gBSdslvqfeatureweighting(F_M,Method,P,FileName,ProgressBarFlag);

User Manual g.CLASSIFYtoolbox 5.16.02 69

KMEANS Clustering

A very common method to find the optimal position of codebook vectors is k-means. The

codebook vectors are approximated iteratively.

Perform the following steps to perform an unsupervised clustering of the data:

1. Open KMEANS Clustering from the Classification menu

2. Click on the Browse button and search for the feature matrix file 3clfm.mat which is

stored under

Documents\gtec\gBSanalyze\testdata\Classify\featurematrix

The feature matrix contains 2 feature channels with 150 examples and 3 classes. The

feature matrix was calculated for 5 time points. The No. of clusters is set to the

number of loaded classes.

3. Select Train 50 % - Test 50 % and press the Start button

User Manual g.CLASSIFYtoolbox 5.16.02 70

gResult2d shows the clustering results for all 5 time points. The method used the first

50 % of the data for finding the codebook vectors and used the result to cluster the test

data. Basically the k-means algorithm was able to find un-subervised the 3 classes.

The outlier (trial 128) yielded to a wrong clustering result.

To perform the example demonstrated above from the MATLAB command line use

the following code:

%Load FeatureMatrix

F_M=featurematrix;

FileName=['C:\Users\' getenv('USERNAME')

'\Documents\gtec\gBSanalyze\testdata\Classify\featurematrix\3clfm.mat'];

F_M=load(F_M,FileName);

%KMEANS Clustering

P.ncluster=[3];

P.stoperror=[0.98];

P.epochs=[1000];

PlotFeatures=[1 2];

Method=['KMEANS'];

TrainTestData=['50:50'];

FileName=[''];

ProgressBarFlag=[0];

C_O=gBSkmeansclustering(F_M,Method,P,TrainTestData,PlotFeatures,...

FileName,ProgressBarFlag);

User Manual g.CLASSIFYtoolbox 5.16.02 71

Using the Classifier

After generating a classifier with the linear or non-linear methods it is possible to use this

classifier for the classification of new data.

There are two ways:

Apply Classifier – classifies data of the Data Editor with the classifier and generates a new

channel in the Data Editor. This channel represents the output of the classification method.

Test Classifier – test the generated classifier on new data and produce an error rate curve and

feature cloud in gResult2d

User Manual g.CLASSIFYtoolbox 5.16.02 72

Apply Classifier

Perform the following steps:

1. Load the data-set session1234bp.mat from

Documents\gtec\gBSanalyze\testdata\BCI

into the Data Editor. The Data Editor visualizes 2 EEG channels, 1 trigger channel and

4 bandpower channels.

2. Open the Cut Trials Channels window from the Transform menu and exclude

channels 1, 2 and 3

3. Open Apply Classifier from the Classification menu and Browse for the classifier

file NNbp.mat under

Documents\gtec\gBSanalyze\testdata\BCI\featurematrix\nn

The listbox shows all classification time points with the corresponding classification

error.

User Manual g.CLASSIFYtoolbox 5.16.02 73

4. Select the appropriate classifier (normally the best one) and check Add new channels

5. Press Start to classify the data

After classification the Data Editor shows five additional channels with the classification

result of the neural network. The first two channels display the two outputs of the neural

network. Channel 5 reaches at the end of the trial zero, channel 6 reaches at the end 1,

therefore the trial belongs at the end of the trial to the second class.

Channel 7 and 8 represent the probabilities that the data would be assigned to one of the two

classes. A value of 0 means the data does not belong to the corresponding class and a value of

1 means that it belongs to the corresponding class. From channel 7 it can be deduced that it is

up to 80% probable that the trial belongs at the beginning to class 1 and with 72% to the

User Manual g.CLASSIFYtoolbox 5.16.02 74

second class at the end of the trial. This fact is also indicated by channel 9 added by the

ApplyClassifier function. A value of 1 means that this actual time point belongs to the first

class and a 2 means that the time point belongs to the second class.

6. Repeat steps 1 to 5 but check the Add zero class and select a value of 40 for the

Confidence interval [%] parameter

Now the channel 9 indicating the class assignment shows an additional zero class. The

ApplyClassifier function assigns the data samples to this virtual class whenever the

probability that the selected class assignment is wrong is higher than the value of the

Confidence interval [%] parameter which was set to 40 %. This is the case in the middle of

the trial between 35 s and 36 s and when the class assignment switches from class 1 to class to

between 37.5 s and 38 s.

To perform the example demonstrated above from the MATLAB command line use the

following code:

%Load Data

P_C=data;

File=['C:\Users\' getenv('USERNAME')

'\Documents\gtec\gBSanalyze\testdata\BCI\session1234bp.mat'];

P_C=load(P_C,File);

%Select Trials and Channels

trial_id=[];

channel_id=[];

type_id=[];

channelnr_id=[1 2 3];

flag_tr='tr_exc';

flag_ch='ch_exc';

flag_type='type_exc';

flag_nr='nr_exc';

[TrialExclude, ChannelExclude]=gBSselect(P_C,trial_id,flag_tr,...

channel_id,flag_ch,type_id,flag_type,channelnr_id,flag_nr);

P_C=gBScuttrialschannels(P_C,TrialExclude,ChannelExclude);

%Load Classifier

C_O_S=classifierobj;

FileName=['C:\Users\' getenv('USERNAME')

'\Documents\gtec\gBSanalyze\testdata\BCI\featurematrix\nn\NNbp.mat'];

C_O_S=load(C_O_S,FileName);

%Apply Classifier

ClassifierNumber=[7];

Replace=['add channels'];

FileName=[''];

ProgressBarFlag=[0];

ConfidenceInterval=[];

P_C=gBSapplyclassifier(P_C,C_O_S,ClassifierNumber,Replace, ...

 ConfidenceInterval,FileName,ProgressBarFlag);

User Manual g.CLASSIFYtoolbox 5.16.02 75

Test Classifier

After calculating a classifier it is possible to test the classifier on new data.

Perform the following steps:

1. Open Test Classifier from the Classification menu and in the Load FEATURE

MATRIX section Browse to the feature matrix bandpower.mat from

Documents\gtec\gBSanalyze\testdata\BCI\featurematrix

2. In the Load and select CLASSIFIER section Browse for the classifier file NNbp.mat

under

Documents\gtec\gBSanalyze\testdata\BCI\featurematrix\nn

and select the classifier from second 7

3. Press the Start button

User Manual g.CLASSIFYtoolbox 5.16.02 76

gResult2d display the time course of the classification error. The minimum is reached at

second 7 and is 8 %.

Page 2 of gResult2d displays the feature map of feature 3 versus feature 4.

User Manual g.CLASSIFYtoolbox 5.16.02 77

To perform the example demonstrated above from the MATLAB command line use the

following code:

%Load Feature Matrix

F_O=featurematrix;

FileName=['C:\Users\' getenv('USERNAME')

'\Documents\gtec\gBSanalyze\testdata\BCI\featurematrix\bandpower.mat'];

F_O=load(F_O,FileName);

%Load Classifier

C_O=classifierobj;

FileName=['C:\Users\' getenv('USERNAME')

'\Documents\gtec\gBSanalyze\testdata\BCI\featurematrix\nn\NNbp.mat'];

C_O=load(C_O,FileName);

%Test Classifier

ClassifierNumber=[7];

PlotFeatures=[3 4];

FileName=[''];

ProgressBarFlag=[0];

C_O=gBStestclassifier(F_O,C_O,ClassifierNumber,PlotFeatures,FileName,...

ProgressBarFlag);

User Manual g.CLASSIFYtoolbox 5.16.02 78

Classification Output Mapping

After applying a classifier to a dataset, it is possible to plot the classification outputs and

calculate the classification error rates averaged over trials for the selected classes and

channels.

Perform the following steps:

1. Load the data-set mi_2class_80trials.mat from

Documents\gtec\gBSanalyze\testdata\Classify\classifieddata

into the Data Editor. The Data Editor displays 5 channels with classification results

from a two-class Motor Imagery BCI experiment, which was created with linear

discriminant analysis (LDA). The first two channels display the two outputs of the

LDA classification, channels 3 and 4 represent the probabilities that the data would be

assigned to one of the two classes and channel 5 indicates the number of this class.

2. Open the Classification Output Mapping window from the Classification menu,

select the RIGHT and LEFT classes in the Select Class listbox and select a value of 5

% for the Significance level (alpha) parameter.

3. Open the Select channels menu by clicking on the Select channels button. Then, add

(into the Selected channels list) the first 2 channels displayed into the Available

channels list, then press the OK button. The first channel is assigned to the first

User Manual g.CLASSIFYtoolbox 5.16.02 79

selected class (RIGHT), and the second channel is assigned to the second selected

class (LEFT).

4. Check the Show with Result2D and Save results boxes, enter a filename to store the

results and press the Start button.

ON the first page, gResult2D displays the trials (dashed lines) and trial averages (solid lines)

for both classes. The assigned colors are blue for the first selected class (RIGHT) and green

for the second selected class (LEFT). The red vertical line represents the time-point of the

trigger.The y-axis shows the classification result (in this case the LDA distance), and the x-

axis presents the timing of a single trial in seconds.

Please note: For an easier graphical comparison between the two classes, the second output

channel (assigned to class LEFT) was inverted.

User Manual g.CLASSIFYtoolbox 5.16.02 80

The second gResult2D page displays the trials and trials averages for each class in separate

plots, as in the example below. This time the second output channel was not inverted.

The third gResult2D page displays the classification error time courses for individual classes

(blue for class RIGHT and green for class LEFT) and the total error (black), averaged over all

trials.

The violet horizontal line represents the upper border of the confidence interval. Based on it,

the user can decide if the achieved error rates are statistically significant.

User Manual g.CLASSIFYtoolbox 5.16.02 81

5. Repeat steps 1 to 4 but select channels 3 and 4 to map the classification probability

outputs. The gResult2D will contain the same pages described before.

6. Repeat steps 1 to 4, but select channel 5 only.

If the Apply Classifier was done with the Add zero class parameter checked, the first two

pages of gResult2D will contain the same features as presented before, page number 3 will

display the statistical measures of the classification process, and page number 4 will contain

the classification error rates.

The color assignment for the statistical features shown in the third page of gResult2D is

presented below:

 True True Positive (TTP) – correct detections after the cue.

 False True Positive (FTP) – false detections after the cue.

 False Negative detections (FN) – all zero-class samples after the cue.

 False Positive detections (FP) – all detections before the cue that are not

assigned to zero-class.

 True Negative detections (TN) – all samples correctly assigned to zero-class

before the cue.

User Manual g.CLASSIFYtoolbox 5.16.02 82

To perform the example shown above from the MATLAB command line, please use the

following code:

%Load Data

P_C=data;

File=['C:\Users\' getenv('USERNAME') '\Documents\gtec\gBSanalyze' ...

'\testdata\Classify\classifieddata\mi_2class_80trials.mat'];

P_C=load(P_C,File);

%Classification Output Mapping

ClassIndex=[3 4];

ChannelExclude=[3 4 5];

TrialExclude=[];

FileName=['C:\Users\' getenv('USERNAME') '\Documents\gtec\gBSanalyze\'...

'testdata\Classify\Classifieddata\classificationoutputmapping.mat'];

SignificanceLevel=[5];

ProgressBarFlag=1;

V_O = gBSclassificationoutputmapping(P_C,ClassIndex,ChannelExclude,...

TrialExclude,FileName,SignificanceLevel,ProgressBarFlag);

result2D = CreateResult2D(V_O);
gResult2d(result2D);

User Manual g.CLASSIFYtoolbox 5.16.02 83

Data Access

g.BSanalyze stores the feature matrix and the classifier data in specific objects. To access both

objects the get and set commands can be used:

Using the get Command

The get method provides a way to access the object entries

Syntax

get(C_O_S,'PropertyName')

returns the value of the property 'PropertyName' of the object C_O_S

Example

get(C_O_S,'out_err')

Using the set Command

The set method provides a way to set object properties.

Syntax

set(F_O_S,'PropertyName','PropertyValue')

assigns the 'PropertyValue' to the specified 'PropertyName' of the object.

Example

set(F_O_S,'SamplingFrequency',128)

User Manual g.CLASSIFYtoolbox 5.16.02 84

Accessing the Feature Matrix

g.BSanalyze stores feature matrix data in an object called F_O of class featurematrix.

If the data are stored to harddisk the name of the data object is changed to F_O_S.

Entry Description

Features Feature matrix of each time point

ClassLabels Class label for each sample. Each row

corresponds to a class

Interval Mode 1:

[Start Step End]

Mode 2:

[Time Point 1 - Time Point 2 …]

Mode 3 :

[Segment 1 Start - Segment 1 End

Segment 2 Start - Segment 2 End

…]

Classes Class names

ChannelExclude Number of channels which were excluded

FileName Name of featurematrix file

SamplingFrequency Sampling rate of data file

Mode Mode=1 … generated from trial attributes

Mode=2 … generated from time points

Mode=3 … generated from segments

TrialNumber TrialNumber for each feature matrix trial

User Manual g.CLASSIFYtoolbox 5.16.02 85

Accessing the Classifier Object

g.BSanalyze stores classifier data in an object called C_O of class classifierobj.

If the data are stored to harddisk the name of the object is changed to C_O_S.

Entry Description

Out_err Stores the classification error and classification

time point.

First row: time point

Second row: total error

Third row: error of class 1

…

N-row: error of class N

Out_clssfyr Classifier or weight vector for each time point.

Each row corresponds to a time point.

Out_erridx Trial id for wrong classified trials for each class

and time point

Out_clstest Classification result for each time point

Out_rmse Root mean squared error (only for neural

networks)

TPC Trials per class

Interval Mode 1: [Start Step End]

Mode 2: [Time point 1 start - time point 1 end

Time point 2 start – time point 2 end

…

]

AttrNr Class name

Methods Classification method

TrainTestData CV, 100:100, 100:0, 50:50, 0:100

Metric Euclidian or Mahalanobis

InputObj Classifier method object

Features Features for each time point

PlotFeatures Number of features to plot as cloud

User Manual g.CLASSIFYtoolbox 5.16.02 86

Help

g.BSanalyze and the g.CLASSIFYtoolbox provide a printable documentation and a function

help.

The printable documentation is stored under

Your MATLAB path\gtec\gBSanalyze\Help

as gCLASSIFYtoolbox.pdf. Use Acrobat Reader to view the documentation.

To view the function help type

help gBSfunctionname

under the MATLAB command window.

To view all functions that are available in batch mode type

gBSfunctions

User Manual g.CLASSIFYtoolbox 5.16.02 87

Batch Mode

The easiest way to create a batch for data processing is to perform the analysis under the Data

Editor with the graphical user interfaces. Make sure that the Show diary checkbox is enabled

in Appearance Settings under the Options menu.

This forces g.BSanalyze to report all calculations in the MATLAB command window. After

finishing the analysis open a New Script and copy and paste all commands into the file.

User Manual g.CLASSIFYtoolbox 5.16.02 88

Save the batch in your own directory as mybatch.m and start the batch under the MATLAB

command window with

mybatch

For further data-sets just replace the input data file to perform the same analysis.

User Manual g.CLASSIFYtoolbox 5.16.02 89

Product Page

Please visit our homepage www.gtec.at for

 Update announcements

 Downloads

 Troubleshooting

 Additional demonstrations

http://www.gtec.at/

User Manual g.CLASSIFYtoolbox 5.16.02 90

